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Abstract

The theoretical as well as experimental investigations of problems of vibration of magnetoelastic plates in transversal
and longitudinal magnetic fields are considered.

First the space treatment is carried out. The dispersion relation for large electroconductivity in transversal field is
obtained and compared with the value of the averaged treatment. The same results are obtained for longitudinal field. It
is interesting that dispersion relations of space and averaged treatments for large electroconductivity do not coincide for
transversal field and coincide for longitudinal field. Also the dispersion relations for bounded electroconductivity are
obtained and investigated. The obtained results are compared with results of experiments. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

The linear problem of vibrations of magnetoelastic bending waves in plate was considered by Ambart-
sumyan et al. (1977), Ambartsumyan and Bagdasaryan (1966), and Ambartsumyan and Belubekyan (1992).

Nonlinear modulation waves in longitudinal field are investigated by Bagdoev and Movsisyan (1982,
1999). All mentioned investigations are based on the classical averaged theory of thin plates. Wide class of
problems of magnetoelastic waves propagation in solids is considered by Dunkin and Eringen (1963).

In the present paper the space treatment of the problem for transversal and longitudinal field is con-
sidered first for large electroconductivity and later for bounded electroconductivity. Also the averaged
treatment is considered.

The two approaches are compared and it is shown that for large conductivity in longitudinal field they
give the same result, but in transversal field they yield different results. For the space treatment, the lon-
gitudinal field leads to increasing of frequency, and transversal field leads to decreasing of frequency. The
obtained results are checked by experiments.
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2. Space problem for transversal magnetic field

Let the undisturbed magnetic field (MF) H, be directed towards the z axis, normal to the plate, x, y axes
are chosen in the middle plane of the plate.

Let us denote by u,, u,, u. the displacement components along axes, by Hy + h the MF vector, where for
the induced field we take

he = HyH!, h,=HyH,, h. = HH.

Although the problem is three dimensional, due to isotropy of waves properties of plate one may
consider a solution in the variables x, z and set for a quasymonochromatic wave

u, =30 (2)e" +cc., w. =1U.(z)e" +coc.,

‘ . 1
t=hkx—ot, H,=1iH(z)e"+cc., H =1H(z)¢"+cc. M)

Because velocity of particles is much less than speed of light one can in Maxwell’s equations neglect
relativistic term with displacement current. As is mentioned in Ambartsumyan et al. (1977) for nonmagnetic
electroconducting materials and dielectrics magnetic permeability is same.

The equations of motion and the induction in magnetoelastic media are given by Ambartsumyan et al.
(1977) and by Novatski (1975) as follows:

»* &*U, w? . dU. & (dH, . b?

— - — U, _ — — — Hz s = 1 -, 2

ol ka+02U+Clde a2<dz ik ) ¢ = (2)

du, dU. B, o

Cik & e —;k UZ+;UZ:O, 3)
K 1 &°H, du,

—i Hx _Hx*_ -":7' x7 4

1 Jro,uo oy dz? 74 “)
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Y L S k. (5)

oy oy 42

Here a? = (u,HZ)/p, 1, is the magnetic permeability, o the electroconductivity, a and b the velocities of
longitudinal and transversal elastic waves, and p the density. Looking for the solution in the form of
Novatski

UZ = AjCthZ, Ux = l;jSthZ7 ]‘Ix = C‘jCthZ7 Hz = DjSthZ7 (6)

where repeated indices mean summatron from Egs. (1) to (3), one can obtain from Egs. (2)-(6) relations
between all constants and B; 3 in the form

iV > B wkB . K 1
11237123 = S Xips = —io+ ———}, ., @)
Xi23 ’ -

Cioz=—

. b? ?
(kB 23v103 + <V%7243 — ;kz + ;)AI,Z.} =0,

2

b, , o’ . ai .
—Vip3 — k™ + - B],2‘3 + ClkV1‘2‘3A1‘2,3 =—— (C1,2,3V1‘2,3 - lle,z,s)-
a a a
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From Eq. (7) one may obtain the characteristic equation for ¥ = v, 3 in terms of w:

o o @ R 2 PR .
— V) — _ _——mmm a - — — —m —,

2 2 72 _b2p2 4 o? 2 i k232
a a v aZk + a? a 1+i Il

For finite values of ¢ all v}, ; are finite.
For ¢ = co one obtains two finite values of ¥ = v ,.
For large but finite ¢ third value arises ¥* = v3, which for cop, > 1:

2 2
.3 aj
la)auo b? * ©)

To derive the dispersion relation for the frequency w in space treatment one must add to Egs. (2)-(6)
conditions on the plate boundaries z = £(k/2) with dielectrics g, = g, = 0 and conditions of continuity
of h.

The components of induced MF in dielectrics are

he=1(Cle’ +cc),  h=4Ce" +cc), 0=itFk (10)

Using the equation (0h,/0x) + (0h,/dz) = 0, one can rewrite the mentioned boundary conditions in the
form

h _ h
C]‘CthE = —ijVj ! SthE,
h . h
B,/ijhV/5+1kA_fChvj§:07 (11)

h  a®—2b%, h
AjVjSthE‘i‘leBjSthE = 0,

where again summation is carried out over j =1, 2, 3.
In Eq. (11) one must substitute Eq. (7). The determinant equation of Eq. (11) yields

(1 +§thv1§)/xl (1 +£thvzg)/}{z (1 Jréth‘@ /1

L+ 54 1+ 5k L+ 5 =0, (12)
(thv1 %)Fl/vl (thVZ g)Fz/Vz (thv:; %)F;,/Vg,
where
B, o e 2w O
2 2 _ . J _ J
AI—Vj—Ek +;, Xj_1+1(yo"uo7 FJ—T—A—j (13)

In Eq. (12) one must substitute for v; from Egs. (8) and (9). For finite (swy,)/k* one obtains a complex
system, which can be examined analytically for small a,/b.

In the case of large values of (wau,)/k?, one obtains from Eq. (9) y; = —a}/b?, where a7 /b? is supposed
small.

It is of interest, as for elastic bending waves treated by Novatski (1975), to obtain a dispersion equation
on account of small addenda v{ ,4?. To obtain an analytic solution one must suppose that af /b* is small, but
the obtained values of v}, are still rather complex. Besides, let us assume that a}/w* < 1 for which one
obtains simple relations.
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Then Eq. (8) yields

o ak atkt
2 2 1 1
vi=k B R i

a a a’w?(

where it is supposed that ¢ is large.

To obtain of imaginary part in @ = ! + i for large but finite ¢ one can in Eq. (12) retain terms of
main order. On account that in main order v, , can be taken from Egs. (14) and (15), and that thirty column
in Eq. (12) for large o yields

1+£ Ckz _© Ckz —0
w2 o 2 =i v =
Xa% ) 9 ) V3 ) 1o Uy, 4 0 I

for small a;, vi4 expanding Eq. (12) on powers of a;, w, kh one can show that addenda a}/w* do not
contribute terms to Eq. (12), terms of order w?, air are cancelled and the dispersion relation yields

b k. h\([thv! 1++k2 i thy, 2 1
O (1 ) (e LR () ()L
ax V3 2 thV3§ Vo l—i—ikz 9—@]( Va thV3§ 1+ik2

b 1+ 4 r
n vlh_ 4 V1h -0, N=-2. (16)
aZV3F1 tthE 1—}—%2/{2 tthE I,
Retaining small terms of main order, on account that vy =~ y/—iwu,o, ¥ = 1, one obtains for small
dissipation
n? 2a2k*b? 2 K2
2 2,4 1 2
=—bk"(— —a;— —. 17
@ 3 ¢ a? a5, V3 (17)
Then one can obtain in main order
h? 2a2b*k?
0y2 _ 1504 1
(@) =50k~ a7 (18)
272
0 atk
Wy = —————. (19)
ha\/ 201y
One can also obtain a simple dispersion relation for bounded ¢ and small a; in form
> 1+5%
o ?bzk“c — afk2Taz. (20)

3. Dispersion relation in averaged treatment

For comparison with averaged treatment for arbitrary values of a; /b one can use the averaged equations
of bending of plates.
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For the displacements the classical theory yields

Ou

W =1(4e" +c.c.). (21)

u, = u(x,1), Uy = —z

The equations of motion and induction by Ambartsumyan et al. (1977) yield

*u o%u
Dt it — 7
o TP =4
Ohe __pydv 1 *h, o, ’
or Y ax opg\ a2 o2 )’ (22)
Oh, v, 1 [Ph Oh
= —H e _
o e < = o2 )
where
ou ER?
_ X,z D — 2
e T 21 —)’ (23)
h/2 oK, 1 Oh, Oh
Z= a K. =0, K, =—u,H 2. 24
[ (e e 0k (-5 >y

E, v are Young’s modulus and Poisson coefficient. Matching the solution of Egs. (22) and (24) with the MF
in dielectrics A,, h. one can obtain the dispersion relation for arbitrary o

(25)

Br 22—k Akchii—shat) o

Dk* — pho?* = —1,uOH2k2< +2

where 4 = (k* — iwop,)"?.

Eq. (25) coincides with the equation obtained by another method by Bagdasaryan and given by
Ambartsumyan and Belubekyan (1992).

For bounded ¢ one assumes 1,4 < 1 in Eq. (25):

1 .
k* — pho? = —zpafk2h31wauo,

1
which coincides with the equation by Ambartsumyan and Bagdasaryan (1966).
The obtained relation does not coincide with Eq. (20). For large ¢ and 4, one obtains from Eq. (25)

woHK?
V201,ph(e)?

The second relation in Eq. (26) coincides with Eq. (19), but the first one is different from the space
solution Eq. (18), leading to increasing of (a)(f)2 due to Hy, whereas Eq. (18) leads to decreasing of (a)(f)2 due
to Hy. Thus for transversal MF there is quantitative and qualitative difference for dispersion relations
obtained by space and averaged treatment. So Kircehhoff hypotheses for magnetoelastic plate is not ap-
plicable.

1
()" = (DK 4 i H3lh), =~ (26)
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4. Case of longitudinal magnetic field

Let the undisturbed MF H, be directed along the x axis, then one can write instead of Eqgs. (2)—~(5)

p* d*U, . dU.
E d ) _k X 5 Yx dZ _07
dU d2 b2 5 a (dH, .
dzszkU+ U <d21kHz>,
. K2 1 d’H, . dU. @7
—iwH, + —H, —— —F =iw—,
0ty oy dz? dz
2 1 d°H.
o+ gy 1 d = = wkU,,
Ll opy dz

U,, U, are given by Eq. (6) but

HX = Cj SthZ, Hz = DjChV]'Z

(28)
where summation is carried out over j from Egs. (1) to (3).
Substituting Eq. (28) in Eq. (27) one obtains
2 2 2272 2 52 12
vz—b—2k2+w—2+bzf e _ e vk (29)
a a 2 k2_|_() a21+1k ,‘
a? ol

Repeating the procedure of Section 2, satisfying boundary conditions on the plate edges one obtains the
dispersion relation for large o

M
thv, 4 V11+C“'z\/‘Z%2k<1k)v1 1 4_’2_4'_’11:0 v-b (30)
thv,4 V21+g7 a h vz1+5§ I ’ ry’
where
12 = 2V 20 T pe ) 1,25
1—1 ‘% a—i.
wauo a

The roots of Eq. (29) may be obtained similarly to Egs. (14) and (15), and for finite 6 yield

22 22 2414 20072

S PRI _ bdik  ajo'k
=k a? azk a* {w?a* a0’ (31)

2 2 474 44 20212

) 0 @° ay,,  ak atk®  ajo'k
R T TR R < T B ()

One can show that addenda a}/w? do not contribute to the dispersion relation, and for large ¢ from Eq.
(30) one obtains

((DO)Z _ ﬁk“é’ 2(12](
) =

(33)
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2 2
P O o
2= 32 :
h(¥)"\/ 201,

This investigation was carried out by Bagdoev and Sahakyan (1999).
For comparison with the averaged treatment one repeats calculations carried out for the transversal field
and obtains in the averaged treatment the following dispersion relation for the longitudinal field:

H2u ko k=2 shi 2
DK* — ph Z:L ikh — 2i ! 2. 35
pre = M i Eeh ik 2 (35)

(34)

ryo 2

Hence for large o and 4, one obtains a dispersion relation which, in contrast to the case of the transversal
field, coincides with the relation of space problems (33) and (34).

Frequency (33) coincides and attenuation (34) does not coincide with the values obtained from particular
considerations by Bagdoev and Movsisyan (1999).

For the bounded o, 2,4 < 1 and Eq. (35) yields in the averaged treatment

Dk* — phw?* = ipatop,wh.

One can also obtain from Egs. (27) and (28) the dispersion relation for bounded values of 6 in space
treatment after lengthy calculations in the form

26 2b? 2
(+ zkz(1+_+ ) o) = - 4%

h2b2k4
(@)’ = (36)

N

It is seen from Eq. (36) and from the above mentioned averaged dispersion relation that the second

equation (36) coincides with the averaged value of @) but (w?)2 is quite different.

5. Experimental investigation of vibration of plates in transversal and longitudinal fields

The investigation of influence of constant MF on frequencies of free oscillations of plate are carried out
by scheme given on Fig. 1.

Fig. 1. The principle scheme of experiment.
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Plate 1 is rigidly fastened by holder 2 and is located in longitudinal MF, directed along Ox axis or in
transversal MF directed along Oz axis. Longitudinal MF Hy, = H, is generated by means of solenoid whose
axis is directed along Ox.

In order to study the influence of transversal MF Hy; = H, the plate is located between poles of other
magnet. In contrast to the case of longitudinal field which was applied to all surface of plate, the transversal
field was applied within the region mentioned in the figure by dotted lines.

For the determination of free frequencies of the plate, on small distance from rigidly fastened end by
force P = P, sin wt, produced by smoothly regulated on frequency and amplitude vibrator, are generated
vibrations.

By means of light sensor 3, which was fastened rigidly with plate, signals from vibrating plate were given
to entrance of oscillograph C8-17.

In moment of abrupt increasing of the amplitude of vibration of the plate which corresponds to reso-
nance, the frequency of vibration was fixed. Then MF (Hy, or Hy;) was produced for which other resonance
frequency was obtained.

It was observed any increasing of frequency for longitudinal field and any decreasing of frequency for
transversal field. The value of the MF was Hy; = 0.15-0.2 T and of longitudinal field Hy ~ 1072 T.

For the mentioned MF, the increase of frequency of vibration in longitudinal field was about 1-2%.
Decreasing of frequency of free vibrations for the transversal field was ~2-3%.

Experiments were carried out for aluminum plates of sizes 360 x 60 x 1, 360 x 60 x 4, 360 x 60 x
5 mm?® and for cuprum plate of size 310 x 70 x 1 mm?.

Measurements of MF were carried out by nuclear-magnetic resonance method using device ¢p1-1. Ex-
perimental data are given in the following table:

2h (mm) HOI H03

oo Wy Moo Wy
1 44 44.5 44 42.5
4 42 42.6 42 40.5
5 41 41.8 41 39.6
1 32.8 33.6 32.8 31.2

where 2/ is the thickness of plate, first three lines correspond to aluminum and fourth to cuprum, wy is the
frequency of free vibrations without MF, and wy is the real part of frequency in presence of MF.

The second and third line in the table correspond to first harmonics and first line to second harmonics.

As is seen from the table, values of wy, wy are in qualitative and quantitative agreement with
values from Egs. (18) and (33) which show decreasing of frequency for transversal fields and increasing
for longitudinal fields. It must be noted that for the considered plates the wave number k = (n/
360) mm~! ~ 1072 mm~! and for the dimensionless parameter owH,/k* large values are obtained which
corresponds to the considered theory.

6. Concluding remarks

In the present paper is given scrupulous investigation of dispersion relations for bending magnetoelastic
waves in transversal and longitudinal field.

It is shown that for transversal field more exact space treatment gives decreasing of frequency due to
presence of MF and averaged treatment based on Kircehhoff hypothesis for plates gives increasing of
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frequency i.e. incorrect results. In case of longitudinal MF both treatments give the same result. Mentioned
theories and their results are justified by means of experiments.
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